Mathematical models and heuristic methods for the assembly line balancing problem with hierarchical worker assignment
Nícolas P. Campana,
Manuel Iori and
Mayron César O. Moreira
International Journal of Production Research, 2022, vol. 60, issue 7, 2193-2211
Abstract:
This paper proposes new algorithms for the assembly line balancing problem with hierarchical worker assignment (ALBHW). The ALBHW appears in real industrial contexts, where companies deal with a multi-skilled workforce. It considers task execution times that vary depending on the worker type to whom the task is assigned. Qualification levels among workers are ranked hierarchically, where a lower qualified worker costs less but requires larger execution times then a higher qualified one. The aim is to assign workers and tasks to the stations of an assembly line, in such a way that cycle time and precedence constraints are satisfied, and the total cost is minimised. In this paper, we first present a mathematical model and improve it with preprocessing techniques. Then, we propose a constructive heuristic and a variable neighbourhood descent that are useful to solve large instances. Extensive computational experiments on benchmark instances prove the effectiveness of the algorithms.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2021.1884767 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:60:y:2022:i:7:p:2193-2211
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2021.1884767
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().