Reinforcement learning for robotic flow shop scheduling with processing time variations
Jun-Ho Lee and
Hyun-Jung Kim
International Journal of Production Research, 2022, vol. 60, issue 7, 2346-2368
Abstract:
We address a robotic flow shop scheduling problem where two part types are processed on each given set of dedicated machines. A single robot moving on a fixed rail transports one part at a time, and the processing times of the parts vary on the machines within a given time interval. We use a reinforcement learning (RL) approach to obtain efficient robot task sequences to minimise makespan. We model the problem with a Petri net used for a RLenvironment and develop a lower bound for the makespan. We then define states, actions, and rewards based on the Petri net model; further, we show that the RL approach works better than the first-in-first-out (FIFO) rule and the reverse sequence (RS), which is extensively used for cyclic scheduling of a robotic flow shop; moreover, the gap between the makespan from the proposed algorithm and a lower bound is not large; finally, the makespan from the RL method is compared to an optimal solution in a relaxed problem. This research shows the applicability of RL for the scheduling of robotic flow shops and its efficiency by comparing it to FIFO, RS and a lower bound. This work can be easily extended to several other variants of robotic flow shop scheduling problems.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2021.1887533 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:60:y:2022:i:7:p:2346-2368
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2021.1887533
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().