Semantic-aware event link reasoning over industrial knowledge graph embedding time series data
Bin Zhou,
Xingwang Shen,
Yuqian Lu,
Xinyu Li,
Bao Hua,
Tianyuan Liu and
Jinsong Bao
International Journal of Production Research, 2023, vol. 61, issue 12, 4117-4134
Abstract:
The time series data in the manufacturing process reflects the sequential state of the manufacturing system, and the fusion of temporal features into the industrial knowledge graph will undoubtedly significantly improve the knowledge process efficiency of the manufacturing system. This paper proposes a semantic-aware event link reasoning over an industrial knowledge graph embedding time series data. Its knowledge graph skeleton is constructed through a specific manufacturing process. NLTK is used to transform technical documents into a structured industrial knowledge graph. We employ deep learning (DL)-based models to obtain semantic information related to product quality prediction using time series data collected from IoT devices. Then the prediction information is attached to the specified node in the knowledge graph. Thus, the knowledge graph will describe the dynamic semantic information of manufacturing contexts. Meanwhile, a dynamic event link reasoning model that uses graph embedding to aggregate manufacturing processes information is proposed. The implicit information with industrial temporal knowledge can be further mined and inferred. The case study has shown that the proposed knowledge graph link reasoning reflects dynamic temporal characteristics. Compared to the classical knowledge graph prediction models, our model is superior to the baseline methods.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2021.2022803 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:61:y:2023:i:12:p:4117-4134
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2021.2022803
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().