EconPapers    
Economics at your fingertips  
 

A novel machine learning-based multiobjective robust optimisation strategy for quality improvement of multivariate manufacturing processes

Abhinav Kumar Sharma, Indrajit Mukherjee and Sasadhar Bera

International Journal of Production Research, 2023, vol. 61, issue 13, 4322-4340

Abstract: The primary objective of this study was to develop a novel data-driven machine learning-based multiobjective robust optimisation strategy to improve the overall quality of multivariate manufacturing processes. The new strategy was conceptualised considering a manufacturing environment with unreplicated non-normal data observations and limited opportunity for off-line sequential design of experiments. At a macro level, the new strategy adopts suitable artificial intelligence-based process models and a fine-tuned non-dominated sorting genetic algorithm-II (NSGA-II) to derive robust efficient process setting conditions. These robust solutions are iteratively derived considering process model predictive uncertainties, process setting sensitivities, and variance-covariance structure of uncontrollable multivariate non-normal inputs (or covariates). These solutions are also ranked based on multicriteria decision-making (MCDM) techniques to facilitate implementation. In this study, the quality of the best-ranked solutions was compared (w.r.t. closeness to specified multiple targets and predicted multivariate output variabilities) with those of the solutions obtained from parametric and commercial software-based approaches using three different real-life manufacturing cases.

Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2022.2093683 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:61:y:2023:i:13:p:4322-4340

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2022.2093683

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:61:y:2023:i:13:p:4322-4340