EconPapers    
Economics at your fingertips  
 

Reinforcement learning applied to production planning and control

Ana Esteso, David Peidro, Josefa Mula and Manuel Díaz-Madroñero

International Journal of Production Research, 2023, vol. 61, issue 16, 5772-5789

Abstract: The objective of this paper is to examine the use and applications of reinforcement learning (RL) techniques in the production planning and control (PPC) field addressing the following PPC areas: facility resource planning, capacity planning, purchase and supply management, production scheduling and inventory management. The main RL characteristics, such as method, context, states, actions, reward and highlights, were analysed. The considered number of agents, applications and RL software tools, specifically, programming language, platforms, application programming interfaces and RL frameworks, among others, were identified, and 181 articles were sreviewed. The results showed that RL was applied mainly to production scheduling problems, followed by purchase and supply management. The most revised RL algorithms were model-free and single-agent and were applied to simplified PPC environments. Nevertheless, their results seem to be promising compared to traditional mathematical programming and heuristics/metaheuristics solution methods, and even more so when they incorporate uncertainty or non-linear properties. Finally, RL value-based approaches are the most widely used, specifically Q-learning and its variants and for deep RL, deep Q-networks. In recent years however, the most widely used approach has been the actor-critic method, such as the advantage actor critic, proximal policy optimisation, deep deterministic policy gradient and trust region policy optimisation.

Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2022.2104180 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:61:y:2023:i:16:p:5772-5789

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2022.2104180

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:61:y:2023:i:16:p:5772-5789