Green smart manufacturing: energy-efficient robotic job shop scheduling models
Xin Wen,
Yige Sun,
Hoi-Lam Ma and
Sai-Ho Chung
International Journal of Production Research, 2023, vol. 61, issue 17, 5791-5805
Abstract:
Smart manufacturing has boosted the wide application of mobile robots in robotic cells for automated material delivery. However, the mismatching between machine production process and robot movement process causes extensive energy waste. Nevertheless, most existing robotic job-shop scheduling (RJSP) studies mainly focus on minimising makespan but overlook the low energy efficiency problem faced by robotic cells. Motivated by the importance of green smart manufacturing, in this study, we innovatively propose to achieve robotic cell energy saving through coordinating the machine production process and robot movement process. Specifically, both machines and the mobile robot can flexibly adjust operating speeds with a V-scale speed framework. Two novel energy-efficient RJSP approaches (i.e. the RJSP-E and the RJSP-EM) are thus proposed. The RJSP-E focuses on minimising energy consumption, while the RJSP-EM simultaneously considers makespan (i.e. productivity) and energy consumption. Through computational experiments, the RJSP-E demonstrates superior performances in reducing energy consumption (15% on average), at a loss of productivity (20% on average). On the other hand, the RJSP-EM can select the most suitable energy-saving operating speeds without much sacrifice in productivity. Notably, the RJSP-EM can reduce energy consumption by a mean of 10% even without increasing makespan. The RJSP-EM also demonstrates higher solution efficiency.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2022.2112989 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:61:y:2023:i:17:p:5791-5805
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2022.2112989
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().