A cerebellar operant conditioning-inspired constraint satisfaction approach for product design concept generation
Mingdong Li,
Shanhe Lou,
Yicong Gao,
Hao Zheng,
Bingtao Hu and
Jianrong Tan
International Journal of Production Research, 2023, vol. 61, issue 17, 5822-5841
Abstract:
Conceptual design is a pivotal stage of new product development. The function-behaviour-structure framework is adopted in this stage to help designers search design space and generate conceptual solutions iteratively. Computer-aided methods developed within this framework will yield significant insight into facilitating the cognitive activities of designers. In order to solve the mapping process from behaviours to structures which is a typical constraint satisfaction problem, a cerebellar operant conditioning-inspired constraint satisfaction approach is proposed in this paper. The design constraints-driven operant conditioning and its regulation mechanism by the cerebellum are analysed for the first time. Proposition logic is applied to transfer the constraint satisfaction problem into a propositional satisfiability problem while an undirected graph is utilised to model design space. Inspired by the modularised cerebellar structure, a modularised constraint satisfaction neural network is constructed to determine the satisfiability of design problems. Conceptual solutions can be generated by clustering the embedding of nodes in this network. The proposed approach imitates the design constraint-driven operant conditioning to narrow down design space without assigning specific values to design components. It reduces design iterations and avoids combinatorial explosions during conceptual design.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2022.2116734 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:61:y:2023:i:17:p:5822-5841
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2022.2116734
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().