A new knowledge-guided multi-objective optimisation for the multi-AGV dispatching problem in dynamic production environments
Lei Liu,
Ting Qu,
Matthias Thürer,
Lin Ma,
Zhongfei Zhang and
Mingze Yuan
International Journal of Production Research, 2023, vol. 61, issue 17, 6030-6051
Abstract:
The efficiency of material supply for workstations using Automatic Guided Vehicles (AGVs) is largely determined by the performance of the AGV dispatching scheme. This paper proposes a new solution approach for the AGV dispatching problem (AGVDP) for material replenishment in a general manufacturing workshop where workstations are in a matrix layout, and where uncertainty in replenishment time of workstations and stochastic unloading efficiencies of AGVs are dynamic contextual factors. We first extend the literature proposing a mixed integer optimisation model with a delivery satisfaction soft constraint of material orders and two objectives: transportation costs and delivery time deviation. We then develop a new knowledge-guided estimation of distribution algorithm with delivery satisfaction evaluation for solving the model. Our algorithm fuses three knowledge-guided strategies to enhance optimisation capabilities at its respective execution stages. Comprehensive numerical experiments with instances built from a real-world scenario validate the proposed model and algorithm. Results demonstrate that the new algorithm outperforms three popular multi-objective evolutionary algorithms, a discrete version of a recent multi-objective particle swarm optimisation, and a multi-objective estimation of distribution algorithm. Findings of this work provide major implications for workshop management and algorithm design.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2022.2122619 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:61:y:2023:i:17:p:6030-6051
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2022.2122619
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().