Dynamic resource levelling in projects under uncertainty
Hongbo Li,
Xianchao Zhang,
Jinshuai Sun and
Xuebing Dong
International Journal of Production Research, 2023, vol. 61, issue 1, 198-218
Abstract:
In the resource levelling problem (RLP) under uncertainty, existing studies focus on obtaining an open-loop activity list that is not updated during project execution. In project management practice, it is also necessary to address more situations, such as activity overlaps and resource breakdowns. In this paper, we extend the uncertain RLP by proposing a resource levelling problem with multiple uncertainties (RLP-MU) that simultaneously considers uncertainties in activity durations, activity overlaps and resource availabilities. We formulate the RLP-MU as a Markov decision process model. Aimed at levelling resource usage by dynamically scheduling activities at each decision point based on the observed information, we develop a hybrid open–closed-loop approximate dynamic programming algorithm (HOC-ADP). In the HOC-ADP, we devise a closed-loop rollout policy to approximate the cost-to-go function and use the concept of the average project to avoid time-consuming simulation. A greedy-decoding-based estimation of distributed algorithm is also devised to construct an open-loop policy that is embedded in the HOC-ADP to further improve it. We additionally develop a simulation algorithm to evaluate the resource levelling performance of the HOC-ADP. Computational experiments on a benchmark dataset consisting of 540 problem instances are conducted to analyze the performance of the HOC-ADP, and the impact of various factors on resource levelling are investigated. The comparison experimental results indicate that our HOC-ADP outperforms the state-of-the-art meta-heuristics.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2020.1788737 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:61:y:2023:i:1:p:198-218
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2020.1788737
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().