EconPapers    
Economics at your fingertips  
 

Product backorder prediction using deep neural network on imbalanced data

Md Shajalal, Petr Hajek and Mohammad Zoynul Abedin

International Journal of Production Research, 2023, vol. 61, issue 1, 302-319

Abstract: Taking backorders on products is a common scenario in inventory and supply chain management systems. The ability to predict the likelihood of backorders can surely minimise a company's losses. Because the number of backorders is much lower than the number of orders that ship on time, applying a predictive model for this domain is a challenging task. This paper proposes a model that uses a deep neural network to predict backorders; it handles the data imbalance between backorders and filled orders with efficient techniques. To make the dataset balanced, we employ different techniques that include minority class weight boosting, randomised oversampling, SMOTE oversampling, and a combination of oversampling and undersampling. The balanced training data are used in our proposed, fully connected deep neural networks model to train the predictive model. The predictive model learns the likelihood of product backorders by using the training samples. We conduct experiments on a large benchmark dataset to test the performance of our proposed deep neural network–based model. The experimental results achieve a new state-of-the-art performance and outperform some prominent classification models in terms of standard evaluation metrics and expected profit measure.

Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2021.1901153 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:61:y:2023:i:1:p:302-319

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2021.1901153

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:61:y:2023:i:1:p:302-319