EconPapers    
Economics at your fingertips  
 

Anti-conflict AGV path planning in automated container terminals based on multi-agent reinforcement learning

Hongtao Hu, Xurui Yang, Shichang Xiao and Feiyang Wang

International Journal of Production Research, 2023, vol. 61, issue 1, 65-80

Abstract: AGV conflict prevention path planning is a key factor to improve transportation cost and operation efficiency of the container terminal. This paper studies the anti-conflict path planning problem of Automated Guided Vehicle (AGV) in the horizontal transportation area of the Automated Container Terminals (ACTs). According to the characteristics of magnetic nail guided AGVs, a node network is constructed. Through the analysis of two conflict situations, namely the opposite conflict situation and same point occupation conflict situation, an integer programming model is established to obtain the shortest path. The Multi-Agent Deep Deterministic Policy Gradient (MADDPG) method is proposed to solve the problem, and the Gumbel-Softmax strategy is applied to discretize the scenario created by the node network. A series of numerical experiments are conducted to verify the effectiveness and the efficiency of the model and the algorithm.

Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2021.1998695 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:61:y:2023:i:1:p:65-80

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2021.1998695

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:61:y:2023:i:1:p:65-80