The integrated lot-sizing and cutting stock problem under demand uncertainty
Eduardo Curcio,
Vinícius L. de Lima,
Flávio K. Miyazawa,
Elsa Silva and
Pedro Amorim
International Journal of Production Research, 2023, vol. 61, issue 20, 6691-6717
Abstract:
Interest in integrating lot-sizing and cutting stock problems has been increasing over the years. This integrated problem has been applied in many industries, such as paper, textile and furniture. Yet, there are only a few studies that acknowledge the importance of uncertainty to optimise these integrated decisions. This work aims to address this gap by incorporating demand uncertainty through stochastic programming and robust optimisation approaches. Both robust and stochastic models were specifically conceived to be solved by a column generation method. In addition, both models are embedded in a rolling-horizon procedure in order to incorporate dynamic reaction to demand realisation and adapt the models to a multistage stochastic setting. Computational experiments are proposed to test the efficiency of the column generation method and include a Monte Carlo simulation to assess both stochastic programming and robust optimisation for the integrated problem. Results suggest that acknowledging uncertainty can cut costs by up to 39.7%, while maintaining or reducing variability at the same time.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2022.2136279 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:61:y:2023:i:20:p:6691-6717
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2022.2136279
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().