EconPapers    
Economics at your fingertips  
 

A review on reinforcement learning algorithms and applications in supply chain management

Benjamin Rolf, Ilya Jackson, Marcel Müller, Sebastian Lang, Tobias Reggelin and Dmitry Ivanov

International Journal of Production Research, 2023, vol. 61, issue 20, 7151-7179

Abstract: Decision-making in supply chains is challenged by high complexity, a combination of continuous and discrete processes, integrated and interdependent operations, dynamics, and adaptability. The rapidly increasing data availability, computing power and intelligent algorithms unveil new potentials in adaptive data-driven decision-making. Reinforcement Learning, a class of machine learning algorithms, is one of the data-driven methods. This semi-systematic literature review explores the current state of the art of reinforcement learning in supply chain management (SCM) and proposes a classification framework. The framework classifies academic papers based on supply chain drivers, algorithms, data sources, and industrial sectors. The conducted review revealed a few critical insights. First, the classic Q-learning algorithm is still the most popular one. Second, inventory management is the most common application of reinforcement learning in supply chains, as it is a pivotal element of supply chain synchronisation. Last, most reviewed papers address toy-like SCM problems driven by artificial data. Therefore, shifting to industry-scale problems will be a crucial challenge in the next years. If this shift is successful, the vision of data-driven decision-making in real-time could become a reality.

Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2022.2140221 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:61:y:2023:i:20:p:7151-7179

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2022.2140221

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-04-17
Handle: RePEc:taf:tprsxx:v:61:y:2023:i:20:p:7151-7179