Transaction selection policy in tier-to-tier SBSRS by using Deep Q-Learning
Bartu Arslan and
Banu Yetkin Ekren
International Journal of Production Research, 2023, vol. 61, issue 21, 7353-7366
Abstract:
This paper studies a Deep Q-Learning (DQL) method for transaction sequencing problems in an automated warehousing system, Shuttle-based Storage and Retrieval System (SBSRS), in which shuttles can move between tiers flexibly. Here, the system is referred to as tier-to-tier SBSRS (t-SBSRS), developed as an alternative design to tier-captive SBSRS (c-SBSRS). By the flexible travel of shuttles between tiers in t-SBSRS, the number of shuttles in the system may be reduced compared to its simulant c-SBSRS design. The flexible travel of shuttles makes the operation decisions more complex in that system, motivating us to explore whether integration of a machine learning approach would help to improve the system performance. We apply the DQL method for the transaction selection of shuttles in the system to attain process time advantage. The outcomes of the DQN are confronted with the well-applied heuristic approaches: first-come-first-serve (FIFO) and shortest process time (SPT) rules under different racking and numbers of shuttles scenarios. The results show that DQL outperforms the FIFO and SPT rules promising for the future of smart industry applications. Especially, compared to the well-applied SPT rule in industries, DQL improves the average cycle time per transaction by roughly 43% on average.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2022.2148767 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:61:y:2023:i:21:p:7353-7366
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2022.2148767
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().