Predictive maintenance for industry 5.0: behavioural inquiries from a work system perspective
Bas van Oudenhoven,
Philippe Van de Calseyde,
Rob Basten and
Evangelia Demerouti
International Journal of Production Research, 2023, vol. 61, issue 22, 7846-7865
Abstract:
Predictive Maintenance (PdM) solutions assist decision-makers by predicting equipment health and scheduling maintenance actions, but their implementation in industry remains problematic. Specifically, prior research repeatedly indicates that decision-makers often refuse to adopt the data-driven, system-generated advice in their working procedures. In this paper, we address these acceptance issues by studying how PdM implementation changes the nature of decision-makers’ work and how these changes affect their acceptance of PdM systems. We build on the human-centric Smith-Carayon Work System model to synthesise literature from research areas where system acceptance has been explored in more detail. Consequently, we expand the maintenance literature by investigating the human-, task-, and organisational characteristics of PdM implementation. Following the literature review, we distil ten propositions regarding decision-making behaviour in PdM settings. Next, we verify each proposition’s relevance through in-depth interviews with experts from both academia and industry. Based on the propositions and interviews, we identify four factors that facilitate PdM adoption: trust between decision-maker and model (maker), control in the decision-making process, availability of sufficient cognitive resources, and proper organisational allocation of decision-making. Our results contribute to a fundamental understanding of acceptance behaviour in a PdM context and provide recommendations to increase the effectiveness of PdM implementations.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2022.2154403 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:61:y:2023:i:22:p:7846-7865
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2022.2154403
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().