EconPapers    
Economics at your fingertips  
 

Confidently extracting hierarchical taxonomy information from unstructured maintenance records of industrial equipment

Abhijeet S. Bhardwaj, Dharmaraj Veeramani and Shiyu Zhou

International Journal of Production Research, 2023, vol. 61, issue 23, 8159-8178

Abstract: Maintenance records of complex industrial equipment contain a large amount of unstructured data (e.g. technician notes) pertaining to repair actions and associated equipment sub-components, degradation conditions, failure mechanisms, etc. These unstructured data can yield valuable insights to improve the equipment design and maintenance plans, resulting in higher productivity and lower operating costs. Since manual review of information is time-consuming, companies make limited use of the maintenance records. To address this opportunity, we propose a taxonomy-guided method for automatically analysing the unstructured data and inferring critical information, specifically the hierarchy of the equipment's sub-assemblies and constituent parts that malfunctioned or failed during a breakdown event. Our method leverages syntactic (related to word frequency) as well as semantic (related to word co-occurrence and their meaning) knowledge. A novel contribution of our work is that we provide a confidence score for the information inferred by our method. Only the maintenance records which receive a low confidence score will require manual review to confirm the automated method's results, thus ensuring minimal use of human resources. We demonstrate the performance of our method using a real-world data set from equipment used in oil rigs.

Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2023.2167013 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:61:y:2023:i:23:p:8159-8178

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2023.2167013

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:61:y:2023:i:23:p:8159-8178