Intelligent machine fault diagnosis with effective denoising using EEMD-ICA- FuzzyEn and CNN
Hanting Zhou,
Wenhe Chen,
Changqing Shen,
Longsheng Cheng and
Min Xia
International Journal of Production Research, 2023, vol. 61, issue 23, 8252-8264
Abstract:
With the advances in smart sensing and data mining technologies of Industry 4.0, condition monitoring of key equipment in manufacturing has brought transformations in production and maintenance management. However, in practical applications, noise from both the working environment and the sensing devices is inevitable, which causes the low performance of data-driven fault diagnosis. To address this challenge, the paper develops a robust two-stage joint denoising method by integrating ensemble empirical mode decomposition (EEMD) and independent component analysis (ICA), with fuzzy entropy discriminant as a threshold. The developed method can filter noisy components from decomposed modal components and reconstruct a new signal with denoised independent components. Moreover, an improved convolutional neural network (CNN) model based on the VGG structure has been constructed as a classifier to achieve end-to-end fault diagnosis. The experimental results demonstrate the high accuracy and superior anti-interference capability of the proposed method for rolling bearing fault diagnosis under various noise levels. Compared with state-of-the-art denoising methods and fault diagnosis methods, the proposed method achieves higher accuracy and robustness under variable noise interference. The proposed method can be applied to broader fault diagnosis tasks of production equipment in complex practical environments.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2022.2122621 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:61:y:2023:i:23:p:8252-8264
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2022.2122621
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().