Digital twin design and analytics for scaling up electric vehicle battery production using robots
Ajit Sharma and
Manoj Kumar Tiwari
International Journal of Production Research, 2023, vol. 61, issue 24, 8512-8546
Abstract:
As electric vehicle adoption accelerates and demand increases, the inability to produce batteries in sufficient quantities has emerged as a critical bottleneck in the electric vehicle supply chain. Given the impending climate change crisis, resolving this bottleneck is imperative to accelerate the transition to a zero-emission electric mobility future. One potential solution is the use of robotics for fast and cost-effective assembly of batteries at scale. This study proposes a three-stage digital twin design and analysis method to develop robotic workcells for fast and cost-effective assembly of electric vehicle battery modules. Using digital twin design and simulation, robotic assembly line configurations have been developed for battery module production at different scales. Digital twin analytics was used to evaluate and optimise the proposed robotic battery assembly system for speed and cost. Industrial automation experts were consulted to further improve robotic work cell layouts to minimise investment in robots. Because digital twins of robotic workcells have been used, the configurations of the battery assembly line, as designed and validated, are ready for immediate implementation. For practitioners, this study offers heuristic methods to determine the appropriate assembly line configuration, the required number of robots and humans, for a desired production volume. For researchers, this study outlines promising areas for future investigation.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2022.2152896 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:61:y:2023:i:24:p:8512-8546
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2022.2152896
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().