Generalised spatially weighted autocorrelation approach for monitoring and diagnosing faults in 3D topographic surfaces
Mejdal A. Alqahtani,
Myong K. Jeong and
Elsayed A. Elsayed
International Journal of Production Research, 2023, vol. 61, issue 2, 541-558
Abstract:
Digital transformation driven by artificial intelligence (AI) allows Industry 4.0 and the internet of things (IIoT) to make significant advancements in automating, controlling, and improving the quality of numerous manufacturing processes. Three-dimensional (3D) surface topography of manufactured products holds important information about the quality of manufacturing processes. Surface topography consists of unique properties, which makes the current monitoring approaches ineffective in identifying local and spatial surface faults. In this paper, we develop a generalised spatially weighted autocorrelation approach based on AI for monitoring changes in products based on their 3D topographic surfaces. We propose two effective algorithms to identify and assign spatial weights to the topographic regions with suspicious characteristics. The normal surface hard thresholding algorithm initially enhances the representation of surface characteristics through binarization, followed by the normal surface connected-component labelling algorithm, which utilises the obtained binary results to identify and assign spatial weights to the suspicious regions. We then introduce a generalised spatially weighted Moran index, which exploits the assigned weights to locally characterise and monitor changes in the spatial autocorrelation structure of identified regions. After an anomaly surface is detected, we extract different fault diagnostic information. The proposed approach proves its robustness and efficiency in characterising, monitoring, and diagnosing different patterns of faults in 3D topographic surfaces.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2021.2010825 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:61:y:2023:i:2:p:541-558
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2021.2010825
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().