EconPapers    
Economics at your fingertips  
 

Bi-objective coordinated production and transportation scheduling problem with sustainability: formulation and solution approaches

Ece Yağmur and Saadettin Erhan Kesen

International Journal of Production Research, 2023, vol. 61, issue 3, 774-795

Abstract: This paper studies a new variant of integrated production scheduling and vehicle routing problem where production of customer orders are performed under job-shop environment and order deliveries are made by a heterogeneous fleet of vehicles, each of which is allowed to take multiple trips. Two conflicting objectives are considered, namely minimisation of the total amount of CO2 emitted by the vehicles and minimisation of maximum tardiness resulting from late deliveries. To this end, we present a bi-objective mixed-integer programming formulation. Augmented ε-Constraint (Augmecon) method is implemented to find Pareto optimal solutions. Due to problem complexity, Augmecon cannot provide solutions even with small-sized problems. Thus, we adopt Pareto Local Search (PLS) and non-dominated sorting genetic algorithm-II (NSGA-II) for practical sized instances. For small-sized instances involving 5, 6, and 7 customers, experimental results indicate that CPU time of Augmecon are 11, 84, and 524 sec, respectively with an average number of Pareto efficient solution of 3.5. In terms of hypervolume index, Augmecon shows the best performance, followed by NSGA-II with 11.32% and PLS with 20.75% degradation for small-sized instances. For medium and large-sized instances, PLS shows worse performance than NSGA-II by 16.87% and 40.48%.

Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2021.2017054 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:61:y:2023:i:3:p:774-795

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2021.2017054

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:61:y:2023:i:3:p:774-795