Meta-heuristics for sustainable supply chain management: a review
Sohrab Faramarzi-Oghani,
Parisa Dolati Neghabadi,
El-Ghazali Talbi and
Reza Tavakkoli-Moghaddam
International Journal of Production Research, 2023, vol. 61, issue 6, 1979-2009
Abstract:
Due to the complexity and the magnitude of optimisation models that appeared in sustainable supply chain management (SSCM), the use of meta-heuristic algorithms as competent solution approaches is being increased in recent years. Although a massive number of publications exist around SSCM, no extant paper explicitly investigates the role of meta-heuristics in the sustainable (forward) supply chain. To fill this gap, a literature review is provided on meta-heuristic algorithms applied in SSCM by analyzing 160 rigorously selected papers published by the end of 2020. Our statistical analysis ascertains a considerable growth in the number of papers in recent years and reveals the contribution of 50 journals in forming the extant literature. The results also show that in the current literature the use of hybrid meta-heuristics is overtaking pure meta-heuristics, the genetic algorithm (GA) and the non-dominated sorting GA (NSGA-II) are the most-used single- and multi-objective algorithms, the aspects of sustainability are mostly addressed in connection with product distribution and routing of vehicles as pivotal operations in supply chain management, and last but not least, the economic-environmental category of sustainability has been further noticed by the scholars. Finally, a detailed discussion of findings and recommendations for future research are provided.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2022.2045377 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:61:y:2023:i:6:p:1979-2009
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2022.2045377
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().