IoT-based milk-run routing for manufacturing system: an application case in an automotive company
Francesco Facchini,
Giorgio Mossa,
Claudio Sassanelli and
Salvatore Digiesi
International Journal of Production Research, 2024, vol. 62, issue 1-2, 536-555
Abstract:
The Internet of Things (IoT) provides new opportunities to improve manufacturing lines’ performance and in-plant logistic processes. The digital milk-run system represents the new frontier to optimize material handling strategies but is still not fully exploited to address material distribution depending on the time slots required by the manufacturing lines. Therefore, to fill this gap, this paper investigates the actual integration of the milk-run system with an IoT system. An analytical model for planning a dynamic routing strategy for tugger trains to deliver the materials to different workstations of a production line has been developed. The proposed model provides a materials distribution consistent with the time slot required by the manufacturing line, ensuring the minimisation of the total distance of the routes. An algorithm developed in Python is proposed to solve the NP-hard problem (nondeterministic polynomial time problem). The model has been applied to a real case of a worldwide automotive company to validate and prove its efficacy and efficiency. Indeed, compared to the current in-plant logistic strategy, (i) the inventory stock of each workstation was ensured, (ii) the average utilization rate of the tugger trains’ fleet was improved, and (iii) the daily path was minimized.
Date: 2024
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2023.2254408 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:62:y:2024:i:1-2:p:536-555
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2023.2254408
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().