A prediction-based iterative Kuhn-Munkres approach for service vehicle reallocation in ride-hailing
Yuhan Guo,
Wenhua Li,
Linfan Xiao and
Hamid Allaoui
International Journal of Production Research, 2024, vol. 62, issue 10, 3690-3715
Abstract:
Online ride-hailing services provide additional transportation capability by recruiting private vehicles to meet people’s growing travel demand. To ensure the profitability of drivers and platforms, pick-up efficiency and frequency must be maintained at high levels. Therefore, consistency between the spatial distribution of drivers and that of travel demand becomes a key issue to address. This paper proposes a prediction-based iterative Kuhn-Munkres approach for service vehicle reallocation in the context of large-scale online ride-hailing. Firstly, preliminaries are formally defined and a novel mathematical model for the problem is proposed. Secondly, a deep spatio-temporal residual perception network is designed to accurately predict travel demand. Thirdly, an iterative Kuhn-Munkres approach combined with an improved A-Star algorithm is developed to reallocate service vehicles to spatial locations according to their distinct travel demand densities. Finally, extensive experiments are conducted to evaluate and verify the performance of the proposed approach.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2023.2247092 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:62:y:2024:i:10:p:3690-3715
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2023.2247092
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().