Multi-objective multi-fidelity optimisation for position-constrained human-robot collaborative disassembly planning
Yilin Fang,
Zhiyao Li,
Siwei Wang and
Xinwei Lu
International Journal of Production Research, 2024, vol. 62, issue 11, 3872-3889
Abstract:
Human-robot collaborative disassembly lines are widely used by remanufacturing companies to disassemble end-of-life (EOL) products. When disassembling large-sized EOL products, each workstation on a disassembly line is generally divided into multiple operating positions, so that different operators can disassemble the same product at their respective positions at the same time, thereby greatly improving efficiency. This paper focuses on a position-constrained human-robot collaborative disassembly planning (PC-HRCDP) problem for the above-mentioned lines, including three subproblems of disassembly sequence planning, disassembly line balancing and robot path planning. A multi-objective mixed integer programming model for PC-HRCDP is developed to solve small-scale instances. Furthermore, a multi-objective multi-fidelity optimisation (MO-MFO) algorithm is proposed to solve large-scale instances. Comprehensive experiments are conducted based on 10 problem instances generated in this study. Experimental results show that the proposed MO-MFO is better than a high-fidelity optimisation algorithm in terms of running time. In addition, benefiting from the strategy of MO-MFO to allocate the limited high-fidelity computational budget to solutions in the two stages of multi-objective optimisation and optimal sampling, MO-MFO is significantly better than the existing representative multi-fidelity optimisation algorithms in terms of the hyper-volume and the inverted generational distance.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2023.2251064 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:62:y:2024:i:11:p:3872-3889
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2023.2251064
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().