A graph-based approach for integrating massive data in container terminals with application to scheduling problem
Suri Liu,
Wenyuan Wang,
Shaopeng Zhong,
Yun Peng,
Qi Tian,
Ruoqi Li,
Xubo Sun and
Yi Yang
International Journal of Production Research, 2024, vol. 62, issue 16, 5945-5965
Abstract:
The deployment of the Industrial Internet of Things (IIoT) in smart container terminals provides a foundation for sensing and recording all operational processes. However, little effort has been devoted to integrating the massive data regarding interoperability challenges, thus limiting the value of data in advancing the intelligent evolution of ports. In this research, we propose a graph-based approach to organise operational records semantically, thereby facilitating data-driven decision-making in container terminals. We first construct a knowledge graph for operational processes in container terminals, employing a tailored procedure for the automatic conversion of operational records into triples. By utilising the graph information, we propose a novel method that integrates reinforcement learning (RL) with a mathematical solver for optimising scheduling problems. The quay crane scheduling problem (QCSP) is illustrated as an example to elaborate on the technical details. Based on a dataset from a real-world container terminal, numerical studies demonstrate the superiority of the proposed framework in terms of information retrieval efficiency and solution quality compared with the traditional data organisation approach.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2024.2304021 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:62:y:2024:i:16:p:5945-5965
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2024.2304021
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().