A novel carbon reduction engineering method-based deep Q-learning algorithm for energy-efficient scheduling on a single batch-processing machine in semiconductor manufacturing
Min Kong,
Weizhong Wang,
Muhammet Deveci,
Yajing Zhang,
Xuzhong Wu and
D'Maris Coffman
International Journal of Production Research, 2024, vol. 62, issue 18, 6449-6472
Abstract:
The semiconductor industry is a resource-intensive sector that heavily relies on energy, water, chemicals, and raw materials. Within the semiconductor manufacturing process, the diffusion furnace, ion implantation machine, and plasma etching machine exhibit high energy demands or operate at extremely high temperatures, resulting in significant electricity consumption, which is usually carbon-intensive. To address energy conservation concerns, the industry adopts batch production technology, which allows for the simultaneous processing of multiple products. The energy-efficient parallel batch scheduling problem arises from the need to optimise product grouping and sequencing. In contrast to existing heuristics, meta-heuristics, and exact algorithms, this paper introduces the Deep Q-Network (DQN) algorithm as a novel approach to address the proposed problem. The DQN algorithm is built upon the agent’s systematic learning of scheduling rules, thereby enabling it to offer guidance for online decision-making regarding the grouping and sequencing of products. The efficacy of the algorithm is substantiated through extensive computational experiments.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2023.2252932 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:62:y:2024:i:18:p:6449-6472
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2023.2252932
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().