Few-shot learning for defect detection in manufacturing
Patrik Zajec,
Jože M. Rožanec,
Spyros Theodoropoulos,
Mihail Fontul,
Erik Koehorst,
Blaž Fortuna and
Dunja Mladenić
International Journal of Production Research, 2024, vol. 62, issue 19, 6979-6998
Abstract:
Quality control is being increasingly automatised in the context of Industry 4.0. Its automatisation reduces inspection times and ensures the same criteria are used to evaluate all products. One of the challenges when developing supervised machine learning models is the availability of labelled data. Few-shot learning promises to be able to learn from few samples and, therefore, reduce the labelling effort. In this work, we combine this approach with unsupervised methods that learn anomaly maps on unlabelled data, providing additional information to the model and enhancing the classification models' discriminative capability. Our results show that the few-shot learning models achieve competitive results compared to those trained in a classical supervised classification setting. Furthermore, we develop novel active learning data sampling strategies to label an initial support set. The results show that using sampling strategies to create and label the initial support set yields better results than selecting samples at random. We performed the experiments on four datasets considering real-world data provided by Philips Consumer Lifestyle BV and Iber-Oleff - Componentes Tecnicos Em Plástico, S.A.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2024.2316279 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:62:y:2024:i:19:p:6979-6998
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2024.2316279
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().