Real-time AGV scheduling optimisation method with deep reinforcement learning for energy-efficiency in the container terminal yard
Lin Gong,
Zijie Huang,
Xi Xiang and
Xin Liu
International Journal of Production Research, 2024, vol. 62, issue 21, 7722-7742
Abstract:
The increasing vessel size and automation level have shifted the productivity bottleneck of automated container terminals from the terminal side to the yard side. Operating an automated container terminal (ACT) yard with a big number of automated guided vehicles (AGV) is challenging due to the complexity and dynamics of the system, severely affecting the operational efficiency and energy use efficiency. In this paper, a hybrid multi-AGV scheduling algorithm is proposed to minimise the energy consumption and the total makespan of AGVs in an ACT yard. This framework first models the AGV scheduling process as a Markov decision process (MDP). Furthermore, a novel scheduling algorithm called MDAS is proposed based on multi-agent deep deterministic policy gradient (MADDPG) to facilitate online real-time scheduling decision-making. Finally, simulation experiments show that the proposed method can effectively enhance the operational efficiency and energy use performance of AGVs in ACT yards of various scales by comparing with benchmarking methods.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2024.2325583 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:62:y:2024:i:21:p:7722-7742
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2024.2325583
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().