Using graph neural network to conduct supplier recommendation based on large-scale supply chain
Yuchun Tu,
Wenxin Li,
Xiao Song,
Kaiqi Gong,
Lu Liu,
Yunhao Qin,
Songsong Liu and
Ming Liu
International Journal of Production Research, 2024, vol. 62, issue 24, 8595-8608
Abstract:
Driven by economic globalisation, various industries have developed a trend towards high specialisation and vertical division of labor, resulting in vast and intricate supply chain networks. However, unforeseen disasters can cause supply chain disruptions, subsequently impacting the regular production and operations of both upstream and downstream enterprises. To tackle this challenge, this study utilises Graph Neural Networks (GNNs) to synthesise graph structural data within the supply chain network, aiming to identify alternative suppliers to mitigate the impact of disruptions. We construct a large-scale knowledge graph to represent the realistic automotive supply chain network in China. Additionally, we propose a GNN-based framework that utilises information about interactions between buyers and suppliers to recommend alternative suppliers from the knowledge graph. Experimental results show that our approach significantly outperforms state-of-the-art GNN-based models, including Light-GCN and NGCF. Our research provides an intelligent and efficient perspective on supplier selection for the Chinese automobile industry.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2024.2344661 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:62:y:2024:i:24:p:8595-8608
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2024.2344661
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().