EconPapers    
Economics at your fingertips  
 

Reinforcement learning and stochastic dynamic programming for jointly scheduling jobs and preventive maintenance on a single machine to minimise earliness-tardiness

Abderrazzak Sabri, Hamid Allaoui and Omar Souissi

International Journal of Production Research, 2024, vol. 62, issue 3, 705-719

Abstract: This paper addresses the problem of stochastic jointly scheduling of resumable jobs and preventive maintenance on a single machine, subject to random breakdowns, to minimise the earliness-tardiness cost. The main objective is to investigate using trending machine learning-based methods compared to stochastic optimisation approaches. We propose two different methods from both fields as we solve the same problem firstly with a stochastic dynamic programming model in an approximation way, then with an attention-based deep reinforcement learning model. We conduct a detailed experimental study according to solution quality, run time, and robustness to analyse their performances compared to those of an existing approach in the literature as a baseline. Both algorithms outperform the baseline. Moreover, the machine learning-based algorithm outperforms the stochastic dynamic programming-based heuristic as we report up to 30.5% saving in total cost, a reduction of computational time from 67 min to less than $ 1s $ 1s on big instances, and a better robustness. These facts highlight clearly its potential for solving such problems.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2023.2172472 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:62:y:2024:i:3:p:705-719

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2023.2172472

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:62:y:2024:i:3:p:705-719