From natural language to simulations: applying AI to automate simulation modelling of logistics systems
Ilya Jackson,
Maria Jesus Saenz and
Dmitry Ivanov
International Journal of Production Research, 2024, vol. 62, issue 4, 1434-1457
Abstract:
Our research strives to examine how simulation models of logistics systems can be produced automatically from verbal descriptions in natural language and how human experts and artificial intelligence (AI)-based systems can collaborate in the domain of simulation modelling. We demonstrate that a framework constructed upon the refined GPT-3 Codex is capable of generating functionally valid simulations for queuing and inventory management systems when provided with a verbal explanation. As a result, the language model could produce simulation models for inventory and process control. These results, along with the rapid improvement of language models, enable a significant simplification of simulation model development. Our study offers guidelines and a design of a natural language processing-based framework on how to build simulation models of logistics systems automatically, given the verbal description. In generalised terms, our work offers a technological underpinning of human-AI collaboration for the development of simulation models.
Date: 2024
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2023.2276811 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:62:y:2024:i:4:p:1434-1457
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2023.2276811
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().