A reinforcement learning-based approach for solving multi-agent job shop scheduling problem
Zhuoran Dong,
Tao Ren,
Fang Qi,
Jiacheng Weng,
Danyu Bai,
Jie Yang and
Chin-Chia Wu
International Journal of Production Research, 2025, vol. 63, issue 10, 3512-3537
Abstract:
Wafer processing is the most expensive, time-consuming, and complex stage in semiconductor manufacturing. It varies significantly based on orders of customers (agents). Optimising the wafer processing flow in a multi-agent scenario can meet customised requirements, speed up delivery, and reduce costs. This work models wafer processing as a multi-agent job shop scheduling problem (MAJSP) with release dates. The objective is to minimise the total weighted makespan of agents. To address both dynamic and static scheduling scenarios in the MAJSP context, two deep reinforcement learning-based (DRL) methods are proposed. In a dynamic scheduling scenario, the statuses of orders and production resources can change at any moment. A DRL method called Graph Transformer Network (GTN) is proposed to rapidly generate high-quality solutions. In a static scheduling scenario, the production plan can be formulated based on predetermined demand and resource conditions. A novel hybrid method (GTN-DABC) that combines GTN with the discrete artificial bee colony algorithm (DABC) is proposed to provide high-quality production plans for manufacturers within an acceptable computation time. Experimental results demonstrate that the proposed GTN outperforms existing heuristics, and the well-designed GTN-DABC is more competitive than other meta-heuristics.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2024.2423807 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:63:y:2025:i:10:p:3512-3537
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2024.2423807
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().