Unsupervised fault detection using frequency-wise angular filtering in contaminated vibration signals
Yunseon Byun,
Daeju Maeng and
Jun-Geol Baek
International Journal of Production Research, 2025, vol. 63, issue 10, 3733-3759
Abstract:
Manufacturing processes involve multiple machines within a production line. Unexpected faults in machines reduce productivity and increase maintenance costs. Engineers face difficulties in managing numerous machines individually and controlling them immediately. For automatic condition monitoring, several studies have focused on multivariate statistical process control and fault detection based on artificial intelligence. These methods require labeled data or assume that the training data contains only normal patterns. However, obtaining labeled data in the industry is challenging because engineers must manually label the data. Contaminated signals containing fault patterns in unlabeled training data significantly degrade the performance of fault detection in the model. This study proposes Unsupervised fault detection with Frequency-wise Angular Filtering (UFAF) to improve the performance of fault detection in contaminated vibration signals. The UFAF extracts angular features to estimate the normal samples for use only during model training. This filtering strategy is repeated at every epoch and is eventually optimised to use only high-quality normal samples during model training. An experiment using SpectraQuest gearbox datasets confirms the excellent performance for contaminated signals, as angular features are effective in identifying normal and fault signals. The UFAF is practical and applicable in industries wherein it is difficult to collect labeled data.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2024.2427895 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:63:y:2025:i:10:p:3733-3759
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2024.2427895
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().