An end-to-end decentralised scheduling framework based on deep reinforcement learning for dynamic distributed heterogeneous flowshop scheduling
Haoran Li,
Liang Gao,
Qingsong Fan,
Xinyu Li and
Baoan Han
International Journal of Production Research, 2025, vol. 63, issue 12, 4368-4388
Abstract:
Heterogeneity among factories in distributed manufacturing significantly expands the solution space, complicating optimisation. Traditional centralised scheduling methods lack the scalability to adapt to varying factory scales. This paper proposes an end-to-end decentralised scheduling framework based on deep reinforcement learning (DRL) for dynamic distributed heterogeneous permutation flowshop scheduling problem (DDHPFSP) with random job arrivals. The framework utilises a multi-agent architecture, where each factory operates as an independent agent, enabling efficient, robust, and scalable scheduling. Specifically, the DDHPFSP is formulated as a partially observable Markov decision process (POMDP), with a state space reflecting heterogeneity and permutation characteristics and a new tailored reward function addressing sparse rewards and high reward variance. An end-to-end policy network with dual-layer architecture is developed, incorporating a feature extraction network to capture intrinsic relationships between jobs and heterogeneous factories, enhancing the agent's self-learning and policy evolution. Moreover, a backward swap search (BSS) method based on greedy heuristics optimises the pre-scheduling plan during the online phase with minimal computation time. Experimental results demonstrate the framework outperforms the best comparison methods by 39.76% on 540 baseline instances and 59.95% on 2430 generalisation instances. Furthermore, the framework's effectiveness improves by 68.9% with the introduction of the BSS method.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2024.2449240 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:63:y:2025:i:12:p:4368-4388
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2024.2449240
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().