Minimising makespan in distributed assembly hybrid flowshop scheduling problems
Kuo-Ching Ying,
Shih-Wei Lin and
Kuan-Fu Chen
International Journal of Production Research, 2025, vol. 63, issue 5, 1674-1691
Abstract:
To enhance the manufacturing flexibility, resilience, and production efficiency, the integration of scheduling for distributed manufacturing with assembly systems has become a pivotal driver of production planning evolution. In this research endeavour, we present a Mixed-Integer Linear Programming model and an innovative Iterated Epsilon-Greedy Reinforcement Learning algorithm to address the distributed assembly hybrid flowshop scheduling problem. Empirical validation, conducted through computational experiments on a benchmark problem set, is used to gain important managerial insights. The computational results demonstrate that the proposed algorithms significantly reduce the makespan for the addressed problem. This study has the potential to make valuable contributions to ongoing research endeavours within the realm of multi-stage shop scheduling, an area that continues to warrant progressive advancement.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2024.2383781 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:63:y:2025:i:5:p:1674-1691
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2024.2383781
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().