The dual-resource-constrained re-entrant flexible flow shop a constraint programming approach and a hybrid genetic algorithm
Johanna Mlekusch and
Richard F. Hartl
International Journal of Production Research, 2025, vol. 63, issue 5, 1803-1824
Abstract:
The dual-resource-constrained re-entrant flexible flow shop scheduling problem represents a specialised variant of the flow shop scheduling problem, inspired by real-world scenarios in screen printing industries. Besides the well-known flow shop structure, stages consist of identical parallel machines and operations may re-enter the same stage multiple times before completion. Moreover, each machine must be operated by a skilled worker, making it a dual-resource-constrained problem according to the existing literature. The objective is to minimise the total length of the production schedule. To address this problem, our study employs two methods: a constraint programming model and a hybrid genetic algorithm with a single-level solution representation and an efficient decoding heuristic. To evaluate the performance of our methods, we conducted a computational study using different problem instances. Our findings demonstrate that the proposed hybrid genetic algorithm consistently delivers high-quality solutions, particularly for large instances, while also maintaining a short computational time. Additionally, our methods improve existing benchmark results for instances from the literature for a subclass of the problem. Furthermore, we provide managerial insights into how dual-resource constraints affect the solution quality and the efficiency associated with different workforce configurations in the described production setting.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2024.2392198 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:63:y:2025:i:5:p:1803-1824
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2024.2392198
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().