Revolutionize cold chain: an AI/ML driven approach to overcome capacity shortages
Ilya Jackson,
Jafar Namdar,
Maria Jesús Saénz,
Richard Augustus Elmquist III and
Luis Rodrigo Dávila Novoa
International Journal of Production Research, 2025, vol. 63, issue 6, 2190-2212
Abstract:
This research investigates how Artificial Intelligence (AI) and Machine Learning (ML) forecasting methodologies can be leveraged for cold chain capacity planning, specifically utilising Prophet and Seasonal Autoregressive Integrated Moving Average parametrised through grid search. In collaboration with Americold, the world's second-largest refrigerated logistic service provider, the study explores the challenges and opportunities in applying AI/ML techniques to complex operations covering 385 customers and a capacity of 73,296 pallet positions. We train and test several AI/ML and traditional statistical models using extensive data for every customer over 3.5 years. Based on the results, MAPE of 5.28% was achieved on the whole site level, and SARIMA outperformed ML models in most cases. Next, we show that developing and applying a Customer Segmentation Matrix has enabled more accurate forecasting and planning across various customer segments, addressing the issue of forecasting inaccuracies. This approach effectively improves forecasting inaccuracies, underscoring the significance of tailoring AI/ML models for demand forecasting within the cold-chain industry. Ultimately, this research presents an AI-driven approach that transcends mere forecasting, offering a practical pathway to manage capacity in light of the constraints.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2024.2398583 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:63:y:2025:i:6:p:2190-2212
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2024.2398583
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().