A distribution-free-based approach for stochastic food closed-loop supply chain
Ding Chen,
Feng Chu,
Ming Liu and
Yufei Huang
International Journal of Production Research, 2025, vol. 63, issue 7, 2526-2555
Abstract:
Resource scarcity has driven growing interest in circular economy (CE). Closed-loop supply chain (CLSC) with returnable transport items (RTIs) in the food industry is an important component of CE. However, existing works on food CLSC with RTIs have not simultaneously considered the perishability, facility location, and uncertain demand under limited information. Therefore, this work addresses a new food CLSC optimisation problem. We first propose a non-linear chance-constrained programming model. It is then transformed into a mixed-integer linear programming model via using the distribution-free (DF) method and sample average approximation (SAA) method, respectively. An illustrative example reveals that the DF method needs only 10.50% of the computation time of the SAA method. To address large-scale problems, an improved Lagrangian relaxation (LR) method is developed. To address the computational challenge in large-scale problems, an improved Lagrangian relaxation (LR) algorithm is developed. Results show that CPLEX achieves a gap of 75.57%, while the LR surpasses it by finding near-optimal solutions with a gap of 1.22%, using only 31.82% of the computation time required by CPLEX. For this work, the main insights are summarised: (1) extending product shelf life can reduce the total cost; and (2) to alleviate uncertain demand and production risks, production capacity and product inventory capacity can be appropriately expanded, but excessive investment may not improve returns.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2024.2406994 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:63:y:2025:i:7:p:2526-2555
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2024.2406994
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().