EconPapers    
Economics at your fingertips  
 

Modelling and monitoring multi-relational networks with ordinal information

Junjie Wang, Chun Fai Lui and Min Xie

International Journal of Production Research, 2025, vol. 63, issue 8, 3018-3034

Abstract: Network relationships can be widely seen among entities in various fields such as social networks, supply networks and Internet of Things (IoT). Sometimes abnormal events such as cyber-attacks occur to cause an abrupt increase or decrease in the traffic of networks. Many anomaly detection methods have been developed to identify such abnormal events in networks. In recent years, statistical process control (SPC) has attracted more and more attention in network anomaly detection. However, many of the existing statistical models regard the interaction between two nodes in unweighted directed networks as a binary variable, i.e. presence and absence of contacts, which fails to reflect the intensity level of interactions. This article proposes a new model to describe the dyadic interactions with several ordinal levels and introduces special quantities to incorporate the ordinal information into the model. The model can be expressed in a matrix form to enable easy parameter estimation and derivation of a quadratic monitoring statistic. Numerous simulation studies show that the proposed methods detect anomalies in multi-relational networks more quickly than existing monitoring methods. A case study exhibits the implementation and superiority of the proposed method.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2024.2415979 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:63:y:2025:i:8:p:3018-3034

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2024.2415979

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-05-02
Handle: RePEc:taf:tprsxx:v:63:y:2025:i:8:p:3018-3034