A Simulation Framework for Evaluating Airline Temporary Schedule Adjustments Following Incidents
Shangyao Yan,
Chin-Hui Tang and
Chong-Lan Shieh
Transportation Planning and Technology, 2005, vol. 28, issue 3, 189-211
Abstract:
Many factors affect the performance of temporary schedule adjustments following incidents. These factors include static recovery scheduling, stochastic flight delays and ‘real-time’ schedule adjustments. Most research on recovery scheduling has focused on improving static recovery scheduling models. None has analyzed these factors from a systems perspective. The research on which this paper is based proposes a framework, embodying a simulation process, that is not only be able to analyze the influence of stochastic flight delays on static recovery scheduling, but can also help to design more effective flexible buffer times and ‘real-time’ schedule adjustment rules. To test the framework we perform a simulation using data from a Taiwan domestic airline. The preliminary results show that the framework could be usefully applied by airlines in practice.
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/03081060500120324 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:transp:v:28:y:2005:i:3:p:189-211
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GTPT20
DOI: 10.1080/03081060500120324
Access Statistics for this article
Transportation Planning and Technology is currently edited by Dr. David Gillingwater
More articles in Transportation Planning and Technology from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().