Updating predictive accident models of modern rural single carriageway A-roads
Alan G. Wood,
Linda J. Mountain,
Richard D. Connors and
Mike J. Maher
Transportation Planning and Technology, 2013, vol. 36, issue 1, 93-108
Abstract:
Reliable predictive accident models (PAMs) are essential to design and maintain safe road networks, and yet the models most commonly used in the UK were derived using data collected 20 to 30 years ago. Given that the national personal injury accident total fell by some 30% in the last 25 years, while road traffic increased by over 60%, significant errors in scheme appraisal and evaluation based on the models currently in use seem inevitable. In this paper, the temporal transferability of PAMs for modern rural single carriageway A-roads is investigated, and their predictive performance is evaluated against a recent data set. Despite the age of these models, the PAMs for predicting the total accidents provide a remarkably good fit to recent data and these are more accurate than models where accidents are disaggregated by type. The performance of the models can be improved by calibrating them against recent data.
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03081060.2012.745760 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:transp:v:36:y:2013:i:1:p:93-108
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GTPT20
DOI: 10.1080/03081060.2012.745760
Access Statistics for this article
Transportation Planning and Technology is currently edited by Dr. David Gillingwater
More articles in Transportation Planning and Technology from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().