EconPapers    
Economics at your fingertips  
 

Effects of queue spillover in networks considering simultaneous departure time and route choices

Xiaoning Zhang

Transportation Planning and Technology, 2013, vol. 36, issue 3, 267-286

Abstract: This paper explores the effects of queue spillover in transportation networks, in the context of dynamic traffic assignment. A model of spatial queue is defined to characterize dynamic traffic flow and queuing formation in network links. Network users simultaneously choose departure time and travel route to minimize the travel cost including journey time and unpunctuality penalty. Using some necessary conditions of the dynamic user equilibrium, dynamic network flows are obtained exactly on some networks with typical structure. Various effects of queue spillover are discussed based on the results of these networks, and some new paradoxes of link capacity expansion have been found as a result of such effects. Analytical and exact results in these typical networks show that ignoring queuing length may generate biased solutions, and the link storage capacity is a very important factor concerning the performance of networks.

Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/03081060.2013.779474 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:transp:v:36:y:2013:i:3:p:267-286

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GTPT20

DOI: 10.1080/03081060.2013.779474

Access Statistics for this article

Transportation Planning and Technology is currently edited by Dr. David Gillingwater

More articles in Transportation Planning and Technology from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:transp:v:36:y:2013:i:3:p:267-286