Estimating probability distributions of dynamic queues
Nicholas B. Taylor and
Benjamin G. Heydecker
Transportation Planning and Technology, 2015, vol. 38, issue 1, 3-27
Abstract:
Queues are often associated with uncertainty or unreliability, which can arise from chance or climatic events, phase changes in system behaviour, or inherent randomness. Knowing the probability distribution of the number of customers in a queue is important for estimating the risk of stress or disruption to routine services and upstream blocking, potentially leading to exceeding critical limits, gridlock or incidents. The present paper focuses on time-varying queues produced by transient oversaturation during demand peaks where there is randomness in arrivals and service. The objective is to present practical methods for estimating a probability distribution from knowledge of the mean, variance and utilisation (degree of saturation) of a queue available from computationally efficient, if approximate, time-dependent calculation. This is made possible by a novel expression for time-dependent queue variance. The queue processes considered are those commonly used to represent isolated priority (M/M/1) and signal-like (M/D/1) systems, plus some statistical variations within the common Pollaczek-Khinchin framework. Results are verified by comparison with Markov simulation based on recurrence relations.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/03081060.2014.976987 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:transp:v:38:y:2015:i:1:p:3-27
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GTPT20
DOI: 10.1080/03081060.2014.976987
Access Statistics for this article
Transportation Planning and Technology is currently edited by Dr. David Gillingwater
More articles in Transportation Planning and Technology from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().