Modeling the effects of congestion on fuel economy for advanced power train vehicles
Alexander Y. Bigazzi and
Kelly J. Clifton
Transportation Planning and Technology, 2015, vol. 38, issue 2, 149-161
Abstract:
Fuel-speed curves (FSC) are used to account for the aggregate effects of congestion on fuel consumption in transportation scenario analysis. This paper presents plausible FSC for conventional internal combustion engine (ICE) vehicles and for advanced vehicles such as hybrid electric vehicles, fully electric vehicles (EVs), and fuel cell vehicles (FCVs) using a fuel consumption model with transient driving schedules and a set of 145 hypothetical vehicles. The FSC shapes show that advanced power train vehicles are expected to maintain fuel economy (FE) in congestion better than ICE vehicles, and FE can even improve for EV and FCV in freeway congestion. In order to implement these FSC for long-range scenario modeling, a bounded approach is presented which uses a single congestion sensitivity parameter. The results in this paper will assist analysis of the roles that vehicle technology and congestion mitigation can play in reducing fuel consumption and greenhouse gas emissions from motor vehicles.
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/03081060.2014.997449 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:transp:v:38:y:2015:i:2:p:149-161
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GTPT20
DOI: 10.1080/03081060.2014.997449
Access Statistics for this article
Transportation Planning and Technology is currently edited by Dr. David Gillingwater
More articles in Transportation Planning and Technology from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().