Optimal bus service patterns and frequencies considering transfer demand elasticity with genetic algorithm
Yavuz Y. Ulusoy and
Steven I-Jy Chien
Transportation Planning and Technology, 2015, vol. 38, issue 4, 409-424
Abstract:
This paper attempts to optimize bus service patterns (i.e., all-stop, short-turn, and express) and frequencies which minimize total cost, considering transfer demand elasticity. A mathematical model is developed based on the objective total cost for a generalized bus route, which is optimized subject to a set of constraints ensuring sufficient capacity, an operable bus fleet, and service frequency conservation. To optimize the integrated service of a bus route with many stops, which is a combinatorial optimization problem, a genetic algorithm is developed and applied to search for the solution. A case study, based on a real-world bus route in New Jersey, is conducted to demonstrate the applicability and effectiveness of the developed model and the solution algorithm. Results show that the proposed methodology is fairly efficient, and the optimized bus service significantly reduces total cost.
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1080/03081060.2015.1026101 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:transp:v:38:y:2015:i:4:p:409-424
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GTPT20
DOI: 10.1080/03081060.2015.1026101
Access Statistics for this article
Transportation Planning and Technology is currently edited by Dr. David Gillingwater
More articles in Transportation Planning and Technology from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().