Individual trip rate transferability analysis based on a decision tree approach
Mehran Fasihozaman Langerudi,
Taha Hossein Rashidi and
Abolfazl (Kouros) Mohammadian
Transportation Planning and Technology, 2016, vol. 39, issue 4, 370-388
Abstract:
Transferring trip rates to areas without local survey data is a common practice which is typically performed in an ad hoc fashion using household-based cross-classification tables. This paper applies a rule-based decision tree method to develop individual-level trip generation models for eight different trip purposes as defined in the US National Household Travel Survey in addition to daily vehicle miles traveled. For each trip purpose, the models are obtained by finding the best fitted statistical distribution to each of the final decision tree clusters while considering the correlation between the trip rates for other trip purposes. The rule-based models are sensitive to changes in demographics. The performance of the models is then tested and validated in a transferability application to the Phoenix Metropolitan Region. These models can be employed in a disaggregate microsimulation framework to generate trips with different purposes at the individual or household level.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/03081060.2016.1160580 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:transp:v:39:y:2016:i:4:p:370-388
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GTPT20
DOI: 10.1080/03081060.2016.1160580
Access Statistics for this article
Transportation Planning and Technology is currently edited by Dr. David Gillingwater
More articles in Transportation Planning and Technology from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().