Pedestrian detection for traffic safety based on Accumulate Binary Haar features and improved deep belief network algorithm
Yang Zhang,
Dong-Rong Xin and
Yi-Hu Wu
Transportation Planning and Technology, 2016, vol. 39, issue 8, 791-800
Abstract:
In order to improve traffic safety and protect pedestrians, an improved and efficient pedestrian detection method for auto driver assistance systems is proposed. Firstly, an improved Accumulate Binary Haar (ABH) feature extraction algorithm is proposed. In this novel feature, Haar features keep only the ordinal relationship named by binary Haar features. Then, the feature brings in the idea of a Local Binary Pattern (LBP), assembling several neighboring binary Haar features to improve discriminating power and reduce the effect of illumination. Next, a pedestrian classification method based on an improved deep belief network (DBN) classification algorithm is proposed. An improved method of input is constructed using a Restricted Bolzmann Machine (RBM) with T distribution function visible layer nodes, which can convert information on pedestrian features to a Bernoulli distribution, and the Bernoulli distribution can then be used for recognition. In addition, a middle layer of the RBM structure is created, which achieves data transfer between the hidden layer structure and keeps the key information. Finally, the cost-sensitive Support Vector Machine (SVM) classifier is used for the output of the classifier, which could address the class-imbalance problem. Extensive experiments show that the improved DBN pedestrian detection method is better than other shallow classic algorithms, and the proposed method is effective and sufficiently feasible for pedestrian detection in complex urban environments.
Date: 2016
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/03081060.2016.1231898 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:transp:v:39:y:2016:i:8:p:791-800
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GTPT20
DOI: 10.1080/03081060.2016.1231898
Access Statistics for this article
Transportation Planning and Technology is currently edited by Dr. David Gillingwater
More articles in Transportation Planning and Technology from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().