Reserve capacity model based on variable demand for land-use development control
Hailiang Xiao,
Jianzhi Gao and
Zhiyun Zou
Transportation Planning and Technology, 2017, vol. 40, issue 2, 199-212
Abstract:
In this paper, the concept of reserve capacity has been extended to zone level to measure the land-use development potentiality of each trip generation zone. Bi-level programing models are proposed to determine the signal setting of individual intersections for maximizing possible increase in total travel demand and the corresponding reserve capacity for each zone. The change of the origin–destination pattern with the variation of upper level decision variables is presented through the combined distribution/assignment model under user equilibrium conditions. Both singly constrained and doubly constrained combined models are considered for different trip purposes and data information. Furthermore, we have introduced the continuous network design problem by increasing road capacity and examined its effect on the land-use development potentiality of trip generation zone. A numerical example is presented to illustrate the application of the models and how a genetic algorithm is applied to solve the problem.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/03081060.2016.1266167 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:transp:v:40:y:2017:i:2:p:199-212
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GTPT20
DOI: 10.1080/03081060.2016.1266167
Access Statistics for this article
Transportation Planning and Technology is currently edited by Dr. David Gillingwater
More articles in Transportation Planning and Technology from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().