Making mode detection transferable: extracting activity and travel episodes from GPS data using the multinomial logit model and Python
Ron Dalumpines and
Darren M. Scott
Transportation Planning and Technology, 2017, vol. 40, issue 5, 523-539
Abstract:
The increasing popularity of global positioning systems (GPSs) has prompted transportation researchers to develop methods that can automatically extract and classify episodes from GPS data. This paper presents a transferable and efficient method of extracting and classifying activity episodes from GPS data, without additional information. The proposed method, developed using Python®, introduces the use of the multinomial logit (MNL) model in classifying extracted episodes into different types: stop, car, walk, bus, and other (travel) episodes. The proposed method is demonstrated using a GPS dataset from the Space-Time Activity Research project in Halifax, Canada. The GPS data consisted of 5127 person-days (about 47 million points). With input requirements directly derived from GPS data and the efficiency provided by the MNL model, the proposed method looks promising as a transferable and efficient method of extracting activity and travel episodes from GPS data.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03081060.2017.1314502 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:transp:v:40:y:2017:i:5:p:523-539
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GTPT20
DOI: 10.1080/03081060.2017.1314502
Access Statistics for this article
Transportation Planning and Technology is currently edited by Dr. David Gillingwater
More articles in Transportation Planning and Technology from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().