Developing an activity-based trip generation model for small/medium size planning agencies
Mohammad M. Molla,
Matthew L. Stone and
Diomo Motuba
Transportation Planning and Technology, 2017, vol. 40, issue 5, 540-555
Abstract:
The primary shortcoming of traditional four-step models is that they cannot capture derived travel demand behaviors. However, travel demand modeling (TDM) is an essential input for urban transportation planning. TDM needs to be highly precise and accurate by integrating the accurate base year estimation along with suitable alternatives. Currently, activity-based models (ABMs) have been developed mostly for large metropolitan planning organizations (MPO), whereas smaller/medium-sized MPOs typically lack these models. The main reason for this disparity in ABM development is the complexity of the models and the cost and data requirements needed. We posit however that smaller MPOs could develop ABMs from traditional travel surveys. Therefore, the specific aim of this paper is to develop a probabilistic home-based destination activity trip generation model considering travel time behavior. Results show that the developed model can significantly capture the actual number of trip generations.
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03081060.2017.1314505 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:transp:v:40:y:2017:i:5:p:540-555
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GTPT20
DOI: 10.1080/03081060.2017.1314505
Access Statistics for this article
Transportation Planning and Technology is currently edited by Dr. David Gillingwater
More articles in Transportation Planning and Technology from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().